Trichlorosilane Business-manufacture,factory,supplier from China

(Total 24 Products for Trichlorosilane Business)
Trichlorosilane is mainly used in the manufacture of polysilicon and silane coupling agents, among which polysilicon is the most important downstream application area of trichlorosilane, accounting for 32% of the consumption in 2021, and silane coupling agent consumption accounted for 25%. The market is still in good condition.
  Contact Now
A high purity trichlorosilane differential pressure coupled distillation process, using the high pressure tower top steam as the heat source of the low pressure tower reboiler, realized the energy integration and process optimization. Chemical simulation software PRO/Ⅱ8.1 was used to simulate the design parameters of two columns of high purity trichlorosilane differential pressure coupled distillation process and three columns of high purity trichlorosilane differential pressure coupled distillation process.
  Contact Now
Trichlorosilane is a higher degree of marketization, competition is more adequate industry. The price of industrial products is easily affected by upstream raw materials and downstream demand. Trichlorosilane production raw materials are mainly industrial silica powder and liquid chlorine, if the raw material prices rise sharply, it profits will be under pressure. The price fluctuation of trichlorosilane has little effect on the profits of polysilicon enterprises. Even if the price is temporarily low, polysilicon prices still have upward momentum. 
  Contact Now
Silane coupling agent product price growth is very obvious, compared with the same period last year growth of 118%. Upstream raw material trichlorosilane price rise, silane products for the high price operation provides a strong support. Reporters learned that trichlorosilane is mainly used in the production of polysilicon, silane coupling agent, silane coupling agent is the second largest downstream market of trichlorosilane, in recent years the demand is more exuberant.
  Contact Now
Electronic grade trichlorosilane sihc13 is colorless, flammable, corrosive liquid and has a suffocating odor. Hydrolyze rapidly in wet air to produce hydrogen chloride: boiling point 31.9 ':. Melting point 126.5 c:. Liquid density 134ukgi resistance: in the air "}", the flammability limit is B.9% - 7U}'u. Flash point - 28. U}.
  Contact Now
With the rapid growth of downstream PV demand, photovoltaic grade trichlorosilane continues to be in short supply. The application of PV grade trichlorosilane in the production of polysilicon includes a one-time requirement for the first commissioning, which accounts for about 20% of the total capacity. Second, the requirement for chlorine supplementation during continuous production accounts for about 10 to 30 percent of total production. On the supply side, the expansion of trichlorosilane production has been conservative in the past.
  Contact Now
The mixture of trichlorosilane and polysilicon, which is a by-product of the recombination from the bottom of the distillation column in the production of trichlorosilane and polysilicon, was used as raw material to prepare silica by gas phase hydrolysis. The effects of gasification temperature, flow rate and flow ratio of water vapor and chlorosilane mixture on physicochemical properties of the products were investigated.
  Contact Now
Since May 2022, trichlorosilane has been sustained upward by the downward trend in silicon metal prices.
  Contact Now
Trichlorosilane (TCS or SiHCl3) is generated as follows within a high temperature, pressurized reactor: Si + 3 HCl ➡ SiHCl3 + H2 ,Si + 3 SiCl4 +2 H2 ➡ 4 SiHCl3 .The TCS is then sent to the CVD (Chemical Vapor Desposition) reactor. In the Siemens process, high-purity silicon "starter" rods or hairpins are exposed to trichlorosilane at 1150 °C in the CVD reactor.
  Contact Now
At present, there are two main synthesis methods of trichlorosilane: one is the traditional synthesis method, that is the silicon chloride method. The other is hydrolyzation of tetrachloride. At present, the mainstream method of polysilicon production is the modified Siemens method, using trichlorosilane reduction method. In recent years, with the continuous decline of polysilicon price, polysilicon production enterprises pay more and more attention to the control of production cost.
  Contact Now
High temperature hydrogenation of silicon tetrachloride is an important method to treat silicon tetrachloride as a by-product of polysilicon. High temperature hydrogenation is silicon tetrachloride and hydrogen as raw materials, heated by 1200 ~ 1250℃ graphite heater, thermal reduction reaction to produce  trichlorosilane. The advantages of the process are that the whole system is closed circulation, suitable for continuous and stable operation; Trichlorosilane products of high purity, need to distillation links less.
  Contact Now
The principle is to reduce high purity trichlorosilane with high purity hydrogen on the high purity silicon core at about 1100℃ to generate polycrystalline silicon deposited on the silicon core. On the basis of the traditional Siemens process, the improved Siemens process is equipped with a supporting process of energy saving, consumption reduction, recycling and utilization of a large amount of H2, HCI, SiCI4 and other by-products and a large amount of by-production heat energy.
  Contact Now
The production process of trichlorosilane is mostly prepared by reaction of gold-grade silicon metal powder and hydrogen chloride gas in a fluidized bed reactor. Generally using gold grade metal silicon powder, hydrogen chloride gas by the combustion reaction of chlorine and hydrogen gas. Reaction temperature is 300-400 degrees, most of the pressure using micro positive pressure operation.
  Contact Now
Chlorine hydrogenation technology is to add HCl on the basis of low temperature hydrogenation technology to further reduce the reaction temperature and increase the yield of trichlorosilane. Chlorine hydrogenation reaction principle is as follows: 2SiCl4(g)+H2(g)+HCl(g)+Si(s)=3SiHCl3(g). Hydrogen plasma is generated by hydrogen discharge, which is passed into the reactor to react with silicon tetrachloride gas. Since hydrogen is dissociated into hydrogen atoms, the reactivity is greatly increased and it can easily react with silicon tetrachloride to form trichlorosilane.
  Contact Now
Colorless liquid with stinky smell. it will decompose with water and dissolve in carbon disulfide, carbon tetrachloride, chloroform, benzene, and many others. flammable, can spontaneously ignite inside the air. poisonous!SpecificationInChIKeyZDHXKXAHOVTTAH-UHFFFAOYAHUN number1295RTECSVV5950000Chemical FormulaSiHCl3Mole Mass135.4524 g·mol⁻¹Exteriorcolourless liquidDensity1.342 g/cm3Melting Point-126.6 °CBoiling Point31.8 °CSolubility (water)Decomposition by waterVapour Pressure0.660 bar (20 °C)It can undergo an addition reaction with olefins.
  Contact Now
Colorless liquid with stinky scent. it's going to decompose with water and dissolve in carbon disulfide, carbon tetrachloride, chloroform, benzene, and lots of others. flammable, can spontaneously ignite in the air. poisonous!It may undergo an addition reaction with olefins.The hydrosilylation reaction of ethylene is as follows: cl3si-h + h2c=ch2 → cl3si-ch2-ch3 .
  Contact Now
Colorless liquid with smelly odor. it'll decompose with water and dissolve in carbon disulfide, carbon tetrachloride, chloroform, benzene, and plenty of others. flammable, can spontaneously ignite within the air. toxic!It could go through an addition response with olefins.The hydrosilylation response of ethylene is as follows: cl3si-h + h2c=ch2 → cl3si-ch2-ch3 .
  Contact Now
Colorless liquid with pungent odor. It will decompose with water and dissolve in carbon disulfide, carbon tetrachloride, chloroform, benzene, etc. Flammable, can spontaneously ignite in the air. Poisonous! SpecificationInChIKeyZDHXKXAHOVTTAH-UHFFFAOYAHUN number1295RTECSVV5950000Chemical FormulaSiHCl3Mole Mass135.4524 g·mol⁻¹Exteriorcolourless liquidDensity1.342 g/cm3Melting Point-126.6 °CBoiling Point31.8 °CSolubility (water)Decomposition by waterVapour Pressure0.660 bar (20 °C)
  Contact Now
The main by-product of trichlorosilane, silicon tetrachloride, is also the main raw material for the manufacture of silicone, its finished products are silicone ester, silicone oil, high temperature insulating paint, silicone resin, silicone rubber and heat resistant cushion lining materials. High purity silicon tetrachloride is also an important raw material for manufacturing high purity silicon dioxide, inorganic silicon compounds, quartz fibers and optical fibers.
  Contact Now
It is obtained by catalytic hydrogenation of aniline and can be divided into atmospheric pressure method and pressure method. In addition, cyclohexamine can be prepared by catalytic ammonolysis of cyclohexane or cyclohexanol, reduction of nitrocyclohexane, and catalytic ammonolysis of cyclohexanone in the presence of hydrogen.The refining process often contains impurities such as aniline and water.
  Contact Now
Cyclohexylamine (CHA) is a primary amine, can be miscible with water with infinite ratio, the molecule is small, easy to adsorb on the metal surface, its shielding effect is better than long chain primary amine and secondary amine, so it can effectively prevent the invasion of corrosive ions, thereby improving corrosion resistance, especially the ability to inhibit corrosion.The corrosion inhibition of 304 stainless steel by cyclohexylamine in sodium chloride medium was studied in detail.
  Contact Now
In silicon tetrachloride purification, boron is the most difficult impurity to remove. Researchers have proposed compound method to remove boron from silicon tetrachloride, which has achieved satisfactory results and has been widely used in industrial production.
  Contact Now
The basic principle of solid adsorption is adsorption separation based on the different polarity of chemical bonds of each component in a compound. Silicon tetrachloride is a symmetric molecule with no dipole moment. In contrast, the contained impurities such as BCl3, AlCl3, FeCl3, PCl3, etc. are asymmetric molecules with considerable dipole moments, which strongly tend to form additive chemical bonds and are easily adsorbed by the adsorbent.
  Contact Now
Relate News
In phase II, based on the original land, the project of technical transformation and expansion of 80000 tons / year trichlorosilane (purification of 20000 tons of electronic grade high-purity trichlorosilane) and 12000 tons / year silicon tetrachloride (purification of 10000 tons of electronic grade high-purity silicon tetrachloride) will be carried out.
In phase II, based on the original land, the project of technical transformation and expansion of 80000 tons / year trichlorosilane (purification of 20000 tons of electronic grade high-purity trichlorosilane) and 12000 tons / year silicon tetrachloride (purification of 10000 tons of electronic grade high-purity silicon tetrachloride) will be carried out.
Build a distinctive recycling industrial chain centered on hydrogen, and the main products include silica sol, cyclohexylamine, dicyclohexylamine and other products.
Phase I covers an area of 110 mu, with a total investment of 360million yuan. Relying on the technical force with independent intellectual property rights and its own financial strength, it will build 50000 T / a silica sol, 10000 t / a cyclohexylamine and other co production projects, and build a distinctive recycling industry chain centered on hydrogen