To explore the application value of ion chromatography in the detection of cyclohexylamine in workplace air. Workplaces containing cyclohexylamine in the production of raw materials were selected as sampling sites, and the content of cyclohexylamine in workplaces was detected by ion chromatography. At the same time, the precision and recovery rate of ion chromatography, desorption efficiency, sampling efficiency and other cation interference characteristics were analyzed.
Contact Now
A vapor phase corrosion inhibitor preparation method, including the following steps :a. Dispersing montmorillonite in deionized water, beating, stirring, and then taking the suspension of the solution to add morpholine, heating the solution to evaporate and precipitate crystals.b. Add formaldehyde to the solution in Step a and let it stand; add dicyclohexylamine and let it stand; then add the mixed solution of benzoic acid and acetone to the solution and let it stand to generate white slurry.
Contact Now
The mixture of trichlorosilane and polysilicon, which is a by-product of the recombination from the bottom of the distillation column in the production of trichlorosilane and polysilicon, was used as raw material to prepare silica by gas phase hydrolysis. The effects of gasification temperature, flow rate and flow ratio of water vapor and chlorosilane mixture on physicochemical properties of the products were investigated.
Contact Now
Electronic grade trichlorosilane sihc13 is colorless, flammable, corrosive liquid and has a suffocating odor. Hydrolyze rapidly in wet air to produce hydrogen chloride: boiling point 31.9 ':. Melting point 126.5 c:. Liquid density 134ukgi resistance: in the air "}", the flammability limit is B.9% - 7U}'u. Flash point - 28. U}.
Contact Now
Since May 2022, trichlorosilane has been sustained upward by the downward trend in silicon metal prices.
Contact Now
Trichlorosilane (TCS or SiHCl3) is generated as follows within a high temperature, pressurized reactor: Si + 3 HCl ➡ SiHCl3 + H2 ,Si + 3 SiCl4 +2 H2 ➡ 4 SiHCl3 .The TCS is then sent to the CVD (Chemical Vapor Desposition) reactor. In the Siemens process, high-purity silicon "starter" rods or hairpins are exposed to trichlorosilane at 1150 °C in the CVD reactor.
Contact Now
Colorless liquid with stinky smell. it will decompose with water and dissolve in carbon disulfide, carbon tetrachloride, chloroform, benzene, and many others. flammable, can spontaneously ignite inside the air. poisonous!SpecificationInChIKeyZDHXKXAHOVTTAH-UHFFFAOYAHUN number1295RTECSVV5950000Chemical FormulaSiHCl3Mole Mass135.4524 g·mol⁻¹Exteriorcolourless liquidDensity1.342 g/cm3Melting Point-126.6 °CBoiling Point31.8 °CSolubility (water)Decomposition by waterVapour Pressure0.660 bar (20 °C)It can undergo an addition reaction with olefins.
Contact Now
Colorless liquid with pungent odor. It will decompose with water and dissolve in carbon disulfide, carbon tetrachloride, chloroform, benzene, etc. Flammable, can spontaneously ignite in the air. Poisonous! SpecificationInChIKeyZDHXKXAHOVTTAH-UHFFFAOYAHUN number1295RTECSVV5950000Chemical FormulaSiHCl3Mole Mass135.4524 g·mol⁻¹Exteriorcolourless liquidDensity1.342 g/cm3Melting Point-126.6 °CBoiling Point31.8 °CSolubility (water)Decomposition by waterVapour Pressure0.660 bar (20 °C)
Contact Now
Colorless liquid with stinky scent. it's going to decompose with water and dissolve in carbon disulfide, carbon tetrachloride, chloroform, benzene, and lots of others. flammable, can spontaneously ignite in the air. poisonous!It may undergo an addition reaction with olefins.The hydrosilylation reaction of ethylene is as follows: cl3si-h + h2c=ch2 → cl3si-ch2-ch3 .
Contact Now
At present, there are few reports on the quantitative analysis of dicyclohexylamine and impurities, so it is necessary to study them separately accurate quantitative analysis method. Since dicyclohexylamine has no ultraviolet absorption, the quantitative analysis method of dicyclohexylamine by high performance liquid chromatography evaporative light scattering detector was studied.
Contact Now
With the rapid growth of downstream PV demand, photovoltaic grade trichlorosilane continues to be in short supply. The application of PV grade trichlorosilane in the production of polysilicon includes a one-time requirement for the first commissioning, which accounts for about 20% of the total capacity. Second, the requirement for chlorine supplementation during continuous production accounts for about 10 to 30 percent of total production. On the supply side, the expansion of trichlorosilane production has been conservative in the past.
Contact Now
The invention relates to a method for the synthesis of N-chlorinated dicyclohexylamine with low concentration of sodium hypochlorite. The mass of dicyclohexylamine is weighed, and the amount of sodium hypochlorite of low concentration required for the reaction is calculated according to the molar ratio of dicyclohexylamine and sodium hypochlorite =1:1.051.20. Put dicyclohexylamine into the reactor, and keep the reactor temperature.
Contact Now
The invention relates to a tail gas refining method, especially a method for hydrogenation of aniline to produce dicyclohexylamine tail gas deamination and hydrogen refining, which belongs to the technical field of chemical industry.
Contact Now
The invention relates to a refining method of dicyclohexylamine, belonging to the technical field of organic chemistry.
Contact Now
The invention relates to a synthesis method of dicyclohexylamine, which comprises the following steps: in a hydrogenation reactor, aniline and hydrogen are hydrogenated in gas phase under the catalyst to obtain DCHA crude product.The replacement reaction was carried out with aniline and DCHA crude product to obtain the replacement mother liquor. The replacement mother liquor was delight and refined, and DCHA product was obtained at the top of the refining tower.
Contact Now
Cyclohexanol gas-phase ammoniation method: it is the liquid hydrogenation of cyclohexanol and ammonia to cyclohexanamine and dicyclohexanamine under the action of nickel/silica catalyst. The yield of cyclohexanol and dicyclohexanamine is 3:1, and the conversion rate of cyclohexanol is about 70%, which has not been reported in industrialization in China.
Contact Now
The invention uses nitro-benzene and hydrogen as raw materials. Adding solvent, nitro-benzene and catalyst into the reaction kettle, controlling the reaction pressure of 0.5 ~ 4MPa, reaction temperature of 60 ~ 160℃, reaction for 2 ~ 8h, cyclohexylamine and dicyclohexylamine are obtained, and the catalyst used is Pd/CNTs catalyst or PD-Ni /CNTs catalyst.
Contact Now
A high purity trichlorosilane differential pressure coupled distillation process, using the high pressure tower top steam as the heat source of the low pressure tower reboiler, realized the energy integration and process optimization. Chemical simulation software PRO/Ⅱ8.1 was used to simulate the design parameters of two columns of high purity trichlorosilane differential pressure coupled distillation process and three columns of high purity trichlorosilane differential pressure coupled distillation process.
Contact Now
In silicon tetrachloride purification, boron is the most difficult impurity to remove. Researchers have proposed compound method to remove boron from silicon tetrachloride, which has achieved satisfactory results and has been widely used in industrial production.
Contact Now
Silicon tetrachloride is an important chemical raw material, it is widely used to produce high-purity silicon, silane, silicone ester, silicone oil, silica gel and other products, widely used in ink, paint, resin, rubber, medicine, grease and other fields; Silicon tetrachloride can also be used to manufacture optical fiber, polysilicon, silicon dioxide, etc., in communications, photovoltaic power generation, optical instruments and other fields of application; In addition, silicon tetrachloride can also be used in the military field, metallurgy, casting and other fields.
Contact Now
In recent years, China's polysilicon production has shown geometric development, but the disposal of polysilicon by-product silicon tetrachloride has become a difficult to step over the development of polysilicon industry "sill", let the silicon industry wear the hat of high pollution.
Contact Now
Silicon tetrachloride is mainly used in the manufacture of silicone esters, gaseous silica, silicone monomer, silicone oil, high temperature insulating paint, silicone resin, silicone rubber and so on. High-purity silicon tetrachloride is the main raw material for manufacturing fiber prefabricated rod, and the quality of fiber prefabricated rod directly determines the fiber performance. Therefore, high-purity silicon tetrachloride is the core raw material of fiber industry.
Contact Now
Distillation is the use of SiCl4, and the difference between the relative volatility of impurities components, through several partial gasification and partial condensation process, to achieve the separation of mixed liquid, so as to obtain high purity silicon tetrachloride products.
Contact Now